1SIT2001, Washington, DC, June 24-29, 2001

Performance-Complexity Tradeoffs for Turbo and Turbo-like Codes

Sam Dolinar, Dariush Divsalar, Aaron Kiely, Fabrizio Pollara
Jet Propulsion Laboratory, California Institute of Technology
e-mail: {sam, dariush, aaron, fabrizio}@éshannon.jpl.nasa.gov

Abstract — We take a first empirical step toward understand-
ing the performance-complexity tradeoffs that have newly arisen
since the advent of turbo codes. For a set of turbo and turbo-like
codes, we study this tradeoff, measuring the degree to which the
code/decoder fails to attain the sphere packing bound.

I. INTRODUCTION
The introduction of turbo codes radically changed the coding com-
munity’s understanding of the fundamental tradeoffs between per-
formance and complexity that govern codes operating near capacity:
powerful near-optimum codes can be decoded with algorithms only
slightly sub-optimum but orders of magnitude less complex than op-
timum decoders. However, even within the world of turbo codes, it
has been observed that codes with higher structural complexity can
outperform simpler codes (e.g., turbo codes with 16- or 8-state com-
ponents vs. those with 4- or 2-state components). Furthermore, new
turbo-like codes whose performance approaches capacity even more
closely than that of the original turbo codes seem to prevail only at
the cost of many more decoding iterations. As yet, there is no good
theoretical basis for analyzing this performance-complexity tradeoff.

II. DEFINITIONS AND TRADEOFFS

Our performance measure is defined so as to normalize out its de-
pendence on code size and rate. We measure the “imperfectness” of
an (n, k) code (and its associated decoder) with respect to the perfor-
mance predicted by the sphere packing bound on the additive white
Gaussian noise (AWGN) channel. This imperfectness is measured (in
dB) as the excess bit-SNR required to achieve a specified word error
probability P, over that predicted by the bound.

There are many possible facets to the complexity of a code and
its associated decoder: number of computations, amount of memory,
complexity of primitive operations, structural complexity, iterative
complexity. We ignore fine details of particular implementations, and
consider iterative decoding using the sum-product algorithm (also
called APP algorithm). In the APP algorithm, each primitive prod-
uct operation multiplies two probabilities, and each primitive sum
operation adds two probabilities. The log-APP variant can be dealt
with similarly. Denoting the complexity of a generalized product or
sum operation by «p or k;, respectively, we define the total decoding
complexity per decoded bit in one iteration for the jth component
decoderas kj = O, jip + Oy, jks, where Op j, Og ; are the num-
ber of product and sum operations performed by the jth component
decoder per decoded bit in one iteration.

During one turbo decoding iteration, each component decoder per-
forms three generalized product operations for each edge of the code
trellis: for the forward and backward metrics, and for the extrinsic
information to be used in the next iteration. The number of gener-
alized product operations per decoded bit per iteration is (neglecting
minor details) Op ;j = 3£, where £ is the number of trellis edges
per decoded bit for the jth decoder. The number of generalized sum
operations can be expressed as Oy j = 2(E; — V) +(Ej; — 2).
for parallel turbo codes or for the inner code of serial codes. How-
ever, for an outer rate-1/n ; code of a serially concatenated code, the

The work described was funded by the TMOD Technology Program and
performed at the Jet Propulsion Laboratory, California Institute of Technology
under contract with the National Aeronautics and Space Administration.

sum operations must be performed for each of the n; code sym-
bols that label a given trellis edge. In this case the formula becomes
Os‘j =2Ej—-Vj)+n;(Ej—2),and thusk;/E; =3cp+QC+n;—
2V;i/E; —2n;/E)ks. For rate 1/nj component codes, £7; = 2V;,
which givesk;j/E; = 3kp+(n;j+1-=2n;/E )ky < 3ikcp+(n;+1jks.
We avoid the dependency on the individual complexities «p, «5 by
bounding «; in terms of (kp + k5): k; < Blep + (nj + DiglEj <
(kp + xs)max[3, nj + 1]E;. This allows us to separate the decod-
ing complexity into an implementation-dependent factor (kp -+ )
and a factor determined by the number of edges in the trellis. Keep-
ing track of the number of bits &; input to each component decoder
per information bit input to the overall decoder and multiplying by
the total number of iterations /, we arrive at the total complexity
€ = L5 k) < L0cp + ) [T kj max(3,nj + 11E; ] with
three factors: the number of iterations, an implementation-dependent
factor, and a structural complexity factor.

Seriai Concatenations

2000 o Repeat & accumulate

+ Repeat 3 J-state rate-1

o Hamming & accumulate

g Convolutional & accumulate

+ d-state rme-172 &d-state raten 12
1000 4

\ .
\ "\ %o
- .

-
Parallel Concn(onaﬂon:\\
CCSDS codes b
8+8 states rate~1/3 turbo

n
=3
&

Decoding Complexity (tot. no. of edges traversed)

T T T
0.5

1 1.5 2 25

Code Imperfectness (AEbINo wrt rate & block dependent lower bound), dB

‘We have plotted the above bound on total complexity as a normal-
ized quantity, «/(xp + «5), showing complexity-performance curves
for a number of turbo and turbo-like codes for Py, = 10~%. Each
curve corresponds to one code, and therefore a constant structural
complexity, and it is traced by varying the number of iterations /.
The curves clustered in the upper left corner of the figure are for the
CCSDS family of parallel turbo codes, using 16-state components,
and ranging in rate from 1/2 to 1/6 and in block size from 1784 to
8920 bits. The tradeoff curve for an 8+8-state parallel turbo code,
with rate 1/3 and block size 1024, is shown over a wider tested SNR
range. Additional curves are shown for several families of serially
concatenated codes. One family consists of simple “repeat and ac-
cumulate” (RA) codes, using an outer repetition code of rate 1/3 or
1/4. Two families of rate-1/2 RA codes are obtained by replacing the
outer repetition code with either the (8,4) Hamming code or the oc-
tal (5,7) 4-state convolutional code. A fourth family is formed by a
rate-1/3 repetition outer code with a 4-state (1/7) rate-1 inner code.
Finally, a rate-1/4 code is obtained by concatenating the octal (5,7) 4-
state rate-1/2 convolutional code with a recursive 4-state octal (1,5/7)
rate-1/2 inner code. Separate curves within each code family pertain
to different block sizes. The parallel concatenated codes exhibit gen-
erally better performance at lower complexity than the serially con-
catenated codes. However, this picture reverses at lower error rates,
e.g., Py = 1079 We are working toward a deeper understanding of
the lower envelope of the complexity-performance curves.



